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1. Introduction

The advent of direct numerical simulations of turbu-

lence has opened new avenues for research on turbu-

lence physics and turbulence modeling. Although lim-

ited to relatively low Reynolds numbers, direct sim-

ulations have already provided new insight into the
structure of turbulence. Direct numerical simulation

provides values for anything that the scientist or mod-

eler would like to know about the flow, and this is be-

ginning to have tremendous payoff. Simulations have
enabled detailed evaluations to be made of turbulence

models intended for use in engineering codes, as well as

models of the small-scale turbulence required for Large

Eddy Simulations {LES}, a promising technique for
practical numerical simulations of turbulence at high

Reynolds numbers. This paper presents an overview

of some recent advances in the physical unsderstand-

ing of turbulence and in turbulence modeling obtained

through such simulations.

One class of turbulence that has been studied exten-

sively by direct simulations is homogeneous turbulence.

In homogeneous turbulence, the mean velocity gradi-
ents are prescribed and must be uniform in space, and

all turbulence statistics are independent of position.
One of the difficult problems in turbulence simulations

is the provision of boundary conditions. It has been

demonstrated that, in simulating homogeneous flows,

one may use periodic boundary conditions, provided

that the computational domain is larger than twice the

distance between points where statistical motions are

significantly correlated. Hence, the boundary motions

do not have to be known to simulate homogeneous tur-

bulence, but instead emerge as a result of the dynamics

of the flow and the periodicity. It is for this reason that
much of the first work on direct simulations has dealt

with homogeneous turbulence.

A program developed by Dr. Robert Rogallo {1981)
at Ames has become the bulwark of direct simula-

tions of various homogeneous turbulent flows. The

program uses de-aliased spectral methods to obtain

high accuracy at smail scales. It works in a coordinate

system that deforms with the mean flow using vari-

ables that are computed exactly in the limit of very

rapid distortions, and so the program has been used

to cover a wide range of mean deformation conditions.
The Rogallo code has been used to study the decay of

isotropic turbulence, the response of isotropic turbu-

lence to imposed mean strain and rotation, and homo-

geneous shear flow, including scalar transport. This

work spans the Ames supercomputers from ILLIAC-

IV to CRAY-2, and has recently been adapted for use

on Masscomp supermini computers.

This paper highlights the results of three recent Stan-

ford Ph.D. Dissertations, carried out on the Cray-

XMP at NASA/Ames under the direction of the au-

thor as part of a cooperative program of turbulence re-

search with colleagues at Ames. This program, which

has spanned well over a decade, has produced many of

the currently active researchers in this field, and has
been instrumental in the establishment of Ames as the

world center for this type of research. A key outgrowth

of this prorgam is the recently-formed NASA/Stanford

Center for Turbulence Research, which will bring to-
gether experimentalists, computational scientists, and

modelers in a concerted attack on the physics and

modeling of turbulence.
Two of the disserations discussed below deal with ho-

mogeneous turbulence, and were carried out using the

Rogallo code. They represent the current state-of-the

art in simulations of such flows, and illustrate the sort

of insight into turbulence physics and models that can
be obtained from direct simulations. The third disser-

tation was the first direct simulation of the spatially-
developing turbulent mixing layer, and is characteris-
tic of the state of affairs in the direct simulation of

flows of practical interest. Current work in extending

this simulation to the supersonic mixing layer, for ap-

plications in both aerodynamics and scramjet engines,
will be mentioned.

2. Response of turbulence to irrotational strain

Two of the building-block flows for turbulence mod-

elers are {1} homogeneous turbulence undergoing in-

compressible, irrotational mean strain and {2} relax-

ation to isotropy after cessation of the mean strain-

ing. These two situations apply approximately to the

turbulence {1) in the contraction section of low-speed

wind tunnels and {2} in the straight test section fol-

lowing the nozzle. Hence, this idealized case has prac-

tical importance, especially in wind tunnels designed
for low free-stream turbulence.

Different types of mean deformation are of inter-

est. Wind tunnels are either axisymmetric or two-

dimensional, and the behavior of the turbulence is
quite different in these cases. A simple model based on

the idea that the turbulence consists of a complex tan-

gle of vortex filaments is useful in understanding these
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differences. The streamwise strain stretches the vortex

filaments that form the turbulence, concentrating the

vorticity and increasing the intensity of the swirling
motion around each filament. The cross-stream con-

traction pushes these filaments closer together. In ax-

isymmetric contraction the filaments are pushed to-

gether from both sides, whereas in plane strain (e.g.

two-dimensional mean contraction}, the vortex fila-

ments are pushed together only in one direction, and
In the diffuser segment of a wind tunnel, a still dif-

ferent type of mean deformation is imposed. In a
round diffuser, vortex filaments are stretched in the

two cross-stream directions, and compressed in the
streamwise direction. This deforms the filaments into

thin sheets, giving rise to intense local shear layers in
the flow.

This line of thinking suggests that the small-scale

structure of the turbulence, as determined by the tan-

gle of vortex filaments, should be different under differ-
ent mean distortions. But one of the common premises

in turbulence modeling is that the small-scale struc-

ture is isotropic, which is not consistent with the model

of distorted filaments. The model also suggests that

the rate of return to isotropy upon cessation of mean
deformation should depend on the nature of the vortex

filament tangle, i.e. on the nature of the prior mean

strain. These are features that one would expect to
see in a numerical simulation and would like to see

exhibited by analyticals model of turbulence.

Moon Lee (1986), now a Postdoctoral Researcher at

NASA/Ames, performed an extensive series of direct
simulations of homogeneous turbulence subjected to

a variety of irrotational strains, and also studied the where

relaxation upon cessation of mean deformation. The
objective of his dissertation was to use the simulation

data to evaluate second-order closure models of tur-

bulence. His simulations used a 1283 mesh, a second-

order Runga-Kutta time advance, carefully-configured
initial conditions, and were executed at Reynolds num-

bers, based on the length and velocity scales of the

energy-containing motions, of the order of 50. Some

background necessary for understanding the impact of
his work will now be outlined.

In second-order closures, one deals with the Reynolds
stress tensor

I f= i/,-j (1)

or, alternatively, with the turbulent velocity scale

q2 -----R4i

and the Reynolds stress anisotropy tensor

b,i = (R4j - lq26q)/q2.

(2a)

(2b)

In isotropic turbulence bq = O. If the energy in one

component, say i/i, goes to zero, then bll = -½; and

if all of the fluctuation energy is in one component, say

' then btl = §. Thus, the values of bij are limited.I/l,

These limits are conveniently described in terms of the

invariants of the bij tensor. The first invariant is Ib =
bll = 0. The second and third invariants are

Xlb = -!b,jbj (3a)
2

1 b
IIIb = _ ijbykbki. (3b)

The limits outlined above translate into limits on IIb

and IIIb, and one finds that all possible states of tur-

bulence must lie within a certain area on the IIIb -

IIb plane, which is called the anisotropy invariant map

{AIM) for the Reynolds stress. Simple eddy viscosity

models for the Reynolds stresses do not necesarily sat-

isfy this condition, particularly in cases of very strong
strain-rate, and hence sometimes these models pro-
duce unrealizable turbulence. The AIM is therefore a

very useful tool for assessing turbulence models.

Second-order closure models for homogeneous flows

require closures for the equations of evolution of Rij
and e , the rate of dissipation of mechanical energy

per unit volume by the turbulence. Alternatively, the

evolution equations for bO. and q2 are used in place of

those for R_j. The turbulent kinetic energy equation

describes the evolution of q2, and is

dq---_2= 2(P - e)
dt

(4a)

P = -R_jSq (4b)

is the rate of energy transfer from the mean motion to

the turbulence {production) and

l"uisis = .,j + vj,,) (4c)

is the mean strain-rate (commas denote partial differ-

entiation). No modeling is necessary in (4a) because it

contains only the model variables and the prescribed

mean velocity gradients.

The equation for bij is

= A,y - - 2b,A. (s)

Here Aij is a production term involving only the an-

isotropy tensor b and the mean velocity gradients,

and hence does not require modeling. ¢ij, which in-
volves the anisotropy of the viscous dissipation and the

pressure-strain terms, must be modeled. It contains a

rapid pressure-strain part that changes instantly when

the mean velocity gradients are changed, which must

be modeled as being proportional to the mean gra-

dients, and slow terms that do not contain the mean
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velocity gradients. For the special case of no mean gra-

dients (the return to isotropy problem), ¢_j contains
only the slow terms. Hence, the modeling of these

terms can be examined by studying direct simulations

of the return to isotropy, and this was the primary
objective of Moon Lee's dissertation.

If one is going to work with bij, q2, and _ as variables,

then the model for ¢_y must be expressed interms of
these variables. The tensor character must be car-

ried by tensors developed from bo.. By the Cayley-
Hamilton theorem, there are only two linearly inde-

pendent tensors that can be involved. Thus, the most

general model of the slow part of ¢_y possible in this
type of second-order closure is

¢,y = (a + 2)biy+ fl(b,_bky + 2IIbS_y} (6)

where a and _ are scalar coefficients that can depend
upon the scalar invariants lib and IIIb and on other

scalars, such as the turbulent Reynolds number RT =
q4/(EV). An immediate consequence of this model is

that the return to isotropy must follow a trajectory on
the Reynolds stress AIM given by

2 2dIIIb 3,_IIIb + _Il_
dI----_bb = 2c_IIb -- 3_IIIb" (7)

Hence, the trajectory should be a unique function of

the position on the AIM (and RT). Thus, by following
the trajectory in the simulations, one should be able

to deduce the parameters c_ and fl, provided that the

assumed model is adequate to describe the flow.

The simulations showed that the return trajectory

is not a unique function of the AIM state; the most

striking deviations were in the case of axisymmetric ex-

pansion flows, where turbulence that had been rapidly

strained actually moved further away from isotropy

when the strain-rates was removed, while turbulence

that had been strained slowly to the same anisotropy

moved towards isotropy upon the removal. Thus, at

least for the case of strong strain-rate (but of the or-

der of the strain rate in many practical situations), the
standard second-order model simply is inadequate.

We then turned to looking for alternative ways to

characterize and model the turbulence, using two other

tensors characterizing the anisotropy of the small-scale

motions. Analogous to R/y, q2 and bly we define the
vorticity tensor by

vo ' ' (sa)= 60iW j

' is a turbulent vorticity component. Thewhere wi
mean-square vorticity is

w2 = _, (8b)

which, for homogeneous turbulence, is related to the

dissipation by

= _,2. (8c)

The vorticity anisotropv tensor is defined by

VO. 1 2- 8o- (8d)
t_O- = W2

and its invariants, II_ and llIu are defined in the same
way as those for b.

The dissipation is

DO. , ,= 2vui,kttj, k .

The trace of this tensor is

(9a)

Dii = 2e (gb)

The associated dissipation anisotropy tensor is defined

by

Dis- (gd
d_i = 2e

and its invariants, IId and IIIa are defined in the same

way as those for b.

The AIMs for v and d look exactly like that for b,

although the phisical meanings of the limiting bound-
aries are different. For example, turbulence in which

the vortex filaments have been stretched infinitely in

one direction has a one-dimensional vorticity field but

a two-dimensional velocity field, and hence its state is
at different points on the v and b AIMs.

The simulations revealed a very surprising result that

shakes the roots of turbulence theory. The anisotropy
of the sman-scale turbulence was not found to be much

smaller than the anisotropy of the large-scale turbu-

lence, as the lore of turbulence suggests. Instead,

there tended to be strong relatonships between the

anisotropies at small and larges scales, as revealed by
the instantaneous states of the turbulence on the vor-

ticity/dissipation AIMS and the Reynolds stress AIM,
respectively. It has been suggested that this is a re-

sult of the low Reynolds numbers used in the simu-

lations. However, we can see no trend for the smalb

scale anisotropy to be less at higher Reynolds numbers.

Figure 1 shows the second invariants of the vortic-

ity and Reynolds stressanisotropiesduring the relax-

ationfrom simple strains.Note that forvirtuallyev-

ery fieldexamined the vorticityanisotropywas larger

than the Reynolds stressanisotropy,as measured by

theirsecond invariants.Figure 2 shows the dissipation

anisotropyvs. that for the Reynolds stressfor these

same velocityfields.Note that the second invariantsof

these anisotropiesare generallyof comparable value,

again indicatingthe non-isotropicnature ofthe small-

scalefield.

Upon furtherreflectionon this problem, itisclear

from the Biot-Savart law, which relatesthe veloc-

ity fieldto the vorticityfield,that anisotropy in the

Reynolds stresscan only ariseifthere is anisotropy

in the two-point vorticitycorrelationtensor. Since
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the anisotropy in Reynolds stressespersistsat high

Reynolds numbers, the vorticityfieldmust also ex-

hibitimportant anis0tropyat high Reynolds numbers.

The simulations led us to focus on this issue,and

they suggest that modeling of the large-scaleturbu-

lence might be improved by explicitconsiderationof

the anisotropiesof the vorticity.

Using the simulated fields as _data _, we explored a

number of possible models for the return to isotropy
problem, seeking a model that would describe the evo-

lution more accurately. We found that the return-

to-isotropy trajectories on the vorticity and dissipa-

tion AIM's were unique, and hence the evolution equa-
tions for v_y and diy can be closed by simple models

in terms of their own tensors. For example, the vor-

ticity anisotropy was found to obey (during return to

isotropy)
dv_y e

..... (1o)
"7q2 v, _

Lee was able to obtain a tidy formula describing the

coefficient -y as a function of the invariants IIb and II_,

and had similar success with the dissipation anisotropy

model. Figures 3 and 4 show the comparisons of

his model trajectories on the vorticity and dissipation

AIMs for the return-to-isotropy cases. But unfortu-

nately a truly satisfactory model for the evolution of

b_y was not discovered, and so a complete second-order

turbulence model has not yet been established.

In summary, Lee's simulations of homogeneous tur-

bulence under irrotational strain provide some very
important new insight into the physics of turbulence.

They raise serious questions about traditional ideas of

small-scale anisotropy that have been deeply imbed-

ded in turbulence theory and modeling, and suggest

that considertation of small-scale anisotropy may be
essential for development of better turbulence mod-

els for the large-scale turbulence. Lee's velocity fields
have been archived at Ames and are being used to

study other aspects of turbulence physics and model-
ing. We expect that much more can be learned from
them about turbulence.

3. Scalar transport in homogeneous shear flow

Homogeneous turbulentshear flow occurs when the

mean velocitygradienttransverseto the flow isuni-

form. This situationhas been studiedexperimentally

in specialwind tunnelsthat use variablegridsto es-

tablishthisunusual mean flow,and has been explored
in great depth using the Rogallo code.

In homogeneous turbulencethere isno net gain or
lossto an elemental controlvolume as a resultof tur-

bulent transport (thegradientsof allturbulence cor-

relationsvanish in homogeneous turbulence}.But the

turbulentfluxesare stillpresent,and they can be stud-

iedby directsimulation.Experiments on heat transfer

in such a flow have been limitedto caseswith a mean

temperature gradient alignedwith the mean velocity

gradient and cross-stream to it. These experiments

suggest that there are strong anisotropies in the tur-

bulent diffusion of scalars (e.g. temperature or species}
in shear flow, but not enough is known about these ef-

fects to allow them to be incorporated in turbulence
models.

In an effort to shed more light on this problem, Mike
Rogers (1986), now a Staff Scientist at Ames, carried

out detailed simulations of homogeneous shear flow

with various arrangements for scalar transport, using
the RogaUo code. The flow considered had the mean
shear rate

dU1

dx2 S (II)

and was examined with the three linearly-independent

cases, each having a mean temperature gradient in

only one direction, at Prandtl numbers of 1, 0.2, and

0.7, and covered a wide range of Sq2/e, the dimen-

sionless shear rate parameter, and Reynolds numbers.

Most were carried out with a 1283 mesh, in some cases
non-square. The computed velocity and scalar fields

have been preserved at selected time intervals, and rep-

resent a great resource for subsequent study of new
physical ideas or modeling concepts.

The case of primary interest is case 2, having a mean

temperature gradient in the x2 direction, for this is the

usual alignment of the velocity gradient and tempera-
ture gradient in shear flows. The simulations confirm

the rather surprising results of experiments that the

heat flux in the direction perpendicular to the mean

temperature gradient is significantly larger than the

heat flux down the imposed mean temperature gra-
dient! Hence, _imple gradient-transport models that

assume that the heat flux vector is aligned directly

opposite to the mean temperature gradient will fail to

predict the strong cross-gradient transport. There are
many important practical situations where this coss-

gradient transport is likely to be a very important phe-
nomena, and so it is important that the mechanisms

be understood and that the models be improved so
that the fluxes can be predicted.

Rogers and Moin studied the structure of the turbu-

lence field in shear flow in great detail, using the simu-

lations to explore such questions as the configurations

of vortex lines in the flow. They found that hairpin
vorticies, of the type found in inhomogeneous shear

flows over solid walls, also occur in homogeneous shear

flow. These vortices arise as a result of the straining
of vortex filaments, and the legs of the hairpin vor-

tices are predominantly aligned with the axis of pos-
itive principal strain rate, i.e. at 45 ° upward from

the xl axis. In homogeneous shear flows there are

equal numbers of Uheads-up" and gheads-down" hair-

pins. The vorticity in the heads has the same sense

as the vorticity in the mean flow; indeed, much of the

transverse vorticity is concentrated in these hairpin

heads. Rogers also found that persistent shearing at
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thehigherReynoldsnumbers givesriseto structures

with strong spanwise coherence over substantialdis-

tances,very much likethe two-dimensional rollersin

a two-stream mixing layer.Thus, the dominant large-

scalestructuresin homogeneous shear flow axe now

thought to be some combinations ofspanwise vortices

and up and down hairpins.
This model of the structure of the turbulence allows

one to understand the anisotropic nature of the turbu-

lent heat transport. Figure 5 shows Rogers' explana-

tion of the way in which these three types of coherent
structures act to convect the scalar field in each of the

three cases.

Simple extensions of the gradient transport model

can be used to predict the heat fluxes for arbitrary

mean temperature gradients. In suggesting these mod-

els we are not proposing that the transport process is

one of gradient diffusion at the molecular level, but

only that the mean temperature gradient provides the

scaling of the heat flux. The direction of the heat flux

vector is determined in a complicated way by the fluid

dynamics, but it turns out that it is possible to model

this in either of two rather simple ways.

The first model uses an anisotropic tensor turbulent

diffusivity Diy, defined by

m OT
Fi = O'u' = -Dii-_-'-"i

oz_
(12)

where O' is the scalar(temperature) fluctuation, T is

the mean scalar quantity (temperature), and iv/is the

scalar flux in the i th direction. D_j is easily calcu-
lated from the simulation data, and is found to be

non-symmetric. However, in a rotated coordinate sys-

tem it can be made antisymmetric, and the important

thing discovered by Rogers is that this coordinate sys-

tem is essentially the same as the principal coordinate

system of R4y and biy. This means that the diagonal

members of Diy should be modeled in terms of the

Reynolds stresstenor. In the rotatedcoordinate sys-

tem, the off-diagonalelements must be antisymmet-

ric,and the only antisymmetric tensoravailableisthe

mean rotationtensor,

no. = -,;- (13)

This leads one to the model

q4

Di$ : -_(Clbly + C261$ + C37,f_i$) (14)

where 7, is an appropriate turbulence time scale (q2/e)
and the coefficients Cx-(73 are dimensionless functions

of scalars in the model. Rogers fit the coefficients as

functions of the Reynolds and Prandtl numbers, and
found that the resulting model could predict all of the
heat fluxes for all of his fields to within 20%. This

model can be used forinhomogeneous flowstoestimate

the anisotropicdiffusivitytensor.

A second, more sophisticatedmodel, containingonly

one freecoefficient,was alsoevaluatedby Rogers. This

model assumes that certainvector terms needing to

be modeled in the exact equation for the turbulent

scalarflux are alignedwith the fluxvector. This as-

sumption had been made intuitivelyby earliermod-

lers,but Rogers was able to check itin detailusing

the simulations,and found that itwas indeed approx-

imately true.This assumption allowsthe equation for

the scalarfluxto be reduced to

OT OU, C F`+ = o. (is)
Ox# ax I 7"

This is a set of linear algebraic equations for the iv/

that can be inverted immediately for special gradients

and solved locally in the general cases. Rogers fit the

simulation results to determine C, and found that the

resulting fluxes were predicted for all cases to within
about 20%.

In summary, Rogers' simulations of scalar transport

in homogeneous turbulent shear flow provide physi-
cal insight on the structure of homogeneous turbulent

shear flow, an explanation for the mechanisms of cross-

gradient turbulent heat transfer, and simple models

that can be incorporated into codes for more com-

plicated engineering problems. The fields have been

archived at Ames and continue to be explored in the

study of the physics and modeling of turbulence.

4. The spatially-developing mixing layer

The mixing layer between two parallel streams of dif-
ferent velocity has been widely studied in the labo-

ratory and, for the case of time-development, by di-

rect numerical simulation. The time-developing case

has lent itself to simulation because it permits the use

of periodic boundary conditions in the flow direction,
thereby eliminating the need to devise turbulent inflow
and outflow conditions.

In a dissertation just completed, Pat Lowery (1986),
who did his research as a NASA CFD Fellow and

now works in CFD at the Battelle Northwest Re-

search Laboratories, developed a code for the spatially-

developing mixing layer, including scalar transport,
with prescribed time-dependent inlet conditions. He

studied the forced mixing layer in a series of two- and

three-dimensional simulations, which included mixing
studies and a fast chemical reaction calculation.

Typical two-dimensional calculations used a mesh 256

(cross-stream} by 1024 (streamwise). Three-dimen-

sional calculations used a mesh 512 (streamwise) by

128 (cross-stream) by 64 (spanwise). Finite-difference
representations were used streamwise, spectral repre-

sentations were used cross-stream and spanwise, and

a third-order Runga-Kutta scheme was used for time

advance. TVD corrections were necesary to maintain
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proper scalar fields. On the Cray XMP 4-8, approxi-

mately 60 CPU seconds were required per time step in

three-dimensions. The Reynolds number at the inlet

to the computational domain, based on the velocity

difference across the mixing layer and the inlet vortic-

ity thickness, was 100; the Prandtl number was 1.
The first problem to be solved was the outflow bound-

ary condition. Other workers have set gradients to

zero at the outflow boundary, but this produces a
Uhard" exit condition that distorts the flow near the

exit. Lowery found that a %ofter _ condition worked

extremely well. The idea is simply to convect quan-

tities out of the computational domain at a uniform

convection velocity Ue by setting

a a

a-7+ = 0

for all of the velocity componts and the scalar field.

This allows the large-scale structures to roll out of

the computational domain at the convection velocity,

which was taken as the average of the two flee-stream

speeds. Figure 6 shows a snapshot of Lowery's simu-

lation, which strongly resembles pictures from experi-
ments.

Most of the work was done with forcing at the inlet,

which in Lowery's simulation was imagined to be just

downstream of the splitter plate forming the mixing
layer. Because the dynamical processes in the layer
involve the interactions of modes with their subhar-

monics to produce vortex merging (the mechanism by

which the turbulence scale grows larger downstream),
it was necessary to excite the inlet flow with fundamen-

tals and sub-harmonics ofthe basicinstabilitymodes

forthe inletlaminarshearlayer(tanh profile).The re-

sponse depends on therelativephases of thesemodes,

and time permitted only a modest study of the pos-

sibilities.However, itbecame clear (as experiments

have already shown) that controlover the growth of

the mixing layercan be achieved by carefulselection

ofthe subharmonic phases.

One of the major experimental observationsisthat

more high-speed fluidisentrainedinto the layerthan

low-speed fluid.This effectis not captured in time-

developing mixing layersimulations,since they are

symmetric with respectto the two flow streams. This

effectwas captured inLowery's simulations,at a level

commensurate with experiments. Probabilitydensity

functions,the turbulentstressbehavior,and otherfea-

turesof the flowswere comparable intrendsand mag-

nitudes with experimental forced mixing layers,al-

though itwas impossibleto make a directcomparison

because ofthe sensitivityto the particularforcing.

There are some theoreticalarguments that suggest

that the mixing layer is convectively unstable, mean-

ing that removal of the forcing will permit the dis-

turbances to wash downstream and the layer to re-

laminarize. Lowery studied this question by freezing

the disturbance field after some computation. Indeed,
the disturbances washed downstream, but only part-

way. It seems that the large-scale disturbances in the

far-downstream region trigger instabilities in the up-

stream flow through the pressure field. These new dis-

turbances then travel downstream, repeating the trig-

gering process (an absolute instability). It is generally

believed that the splitter plate, absent in Lowery's sim-

ulation, is an essential element in making this flow ab-

solutely unstable. The simulation suggests that this
might not be the case.

In his three-dimensional simulations, Lowery added

streamwise vortices to the forcing. These produced
structuresvery similarto those seen in the _braid_

regions of the mixing layer. He ran one simulation

with random excitationat the inlet,and found that

these same structureswere beginning to emerge natu-

rally,although a greatdeal more computational time

would have to be expended to allow them to develop

completely.Thus, one can probably study thesethree-

dimensional effectsby judiciousselectionof the inlet

forcing.

Experiments have shown evidence of some vorticity

ofoppositesigntothat in the mixing layer.This could

be due tothe vorticitycoming from the boundary layer

on the low-speed side of the splitterplate,or itcould

be due tooverturningofvortexfilamentsby the three-

dimensional action of the turbulence. Lowery could

do what an experimentalistcan not, i.e.run without

the low-speed boundary layer,inwhich case negative

vorticitycould resultonly from overturningof vortex

filaments.Feeding the inletflowwith vorticityofonly

one sign,only vorticityof thissign was found in the

two-dimensional simulations.But in the threedimen-

sionalsimulationsa small amount ofvorticityofoppo-

sitesignwas found, indicatingthat thevortex filament

overturningprocess indeed takes place.

A new Ph.D. student, Neil Sandham, has used Low-

ery'scode to study the mixing layerusing inletflows

representingthe splitter-plateboundary layers.These

have shown very littleeffectof the boundary layerson

the overallflowdevelopment, except very near the end

of the splitterplate.In addition,we have developed a

method forrandomly excitingthe inletflowthat looks

quitepromising in that itproduces a mixing layerbe-

haviormuch more characteristicofnaturalmixing lay-

ers than of the forcedlayersstudiedby Lowery.

A new effortis being devoted to simulation of the

compressible spatially-developing mixing layer, which

is of interest in both aerodynamic and scramjet engine
situations. The effort involves both direct numerical

simulations at low Reynolds numbers and the develop-

ment of improved models for LES studies of supersonic

mixing and combustion. Supersonic mixing layers are
known to spread and mix much less rapidly than sub-
sonic layers, and the reasons for this are not well un-

derstood. In the scramjet application, new ways to
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enhance the mixing must be found. We are hopeful

that these direct simulations will, over the next few

years, shed some light on these important questions.

In summary, Lowery's simulations of the spatially-

developing mixing layer provide new physical insight

into the mechanisms of transport and entrainment in

inhomogeneous free shear flows, and provide a basis

for further studies on the modeling of such flows. In-

let conditions for turbulent flows need to be developed,

but the prospects look bright. Extensions to compress-

ible flows are within reach and should be achieved in

the next two or three years.
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2, 3, 4. +, rel_x2:ioa from axisymmetric contraction; x , re_x-_ion
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from _ds_nmetric cootr'_¢ion (.46 = -1); .... , locus of locking for
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